您当前所在位置:主页 > 鲜花分类 >

控制植物长高的工具(控制植物生长发育的途径有哪些)

更新:2023-05-17 17:51归类:鲜花分类人气:67

1. 控制植物生长发育的途径有哪些

植物的分布受许多因素的控制,影响植物垂直分布的是各种非生物因素综合作用;对于海拔高度相同的植物垂直分布,主导作用是光照.在不同海拔高度的植物主导作用是温度。

  植物的生长是植物体内的各种生理活动协调一致,共同作用的结果。因此,所有影响植物生理活动的条件都影响植物的生长,主要包括温度、光、水分、矿质营养和生长物质等。

  温度

  植物只有在一定的温度范围内,才能正常生长。温度对植物的生长也具有最低温度、最适温度和最高温度,称为植物生长的温度三基点。

  植物正常生长的温度不是恒温,而是要有比最适温度稍低的昼夜温度变化,即白天温度高,夜间温度低,具有一定的温差,并呈现周期性的变化,这种现象称为温周期。白天温度较高,利于光合作用的进行,夜间温度低可减少有机物的消耗,利于光合产物的积累,使植物体内的积累大于消耗,加速了植物的生长。

  光照

  光对植物生长的影响,除通过代谢作用影响其生长外,还可通过抑制细胞伸长、促进细胞分化而对植物的器官分化和形态建成产生直接影响。光对植物形态建成产生的直接影称光范型作用。光是绿色植物正常生长所必需的条件,光可影响植物的器官分化、形态建成、光合作用等。

  光照强度

  适宜的光照强度可促进光合作用的顺利进行,为植物的生长提供足够的物质和能量。在黑暗条件下,植物表现为:茎细、节长、脆弱(机械组织不发达)、叶片小而卷曲、根系发育不良和全株发黄,这种现象称为黄化现象。

  光周期

  一天中,光照和黑暗的交替,称为光周期。光周期除了能诱导植物开花外,还影响植物花茎的伸长、块根和块茎的形成、芽的休眠和叶片的脱落等。

  光质

  不同波长的光对植物生长有不同的影响。短波的蓝紫光有抑制植物生长的作用,其中紫外光的抑制作用更显著,它可以使植物矮化。所以,在育苗时常采用浅蓝色的塑料薄膜覆盖,它能透过紫外光,抑制植物徒长,与无色薄膜相比,幼苗生长得更健壮。

  水分

  水是植物生长所必需的。土壤含水量、蒸腾作用的大小、空气湿度等都影响植物的生长。当水分缺乏时,影响植物细胞的分裂和伸长,所以,影响植物的生长。当水分过多时,根系不发达,茎叶细幼徒长,影响产量。

  植物的需水量受植物生育时期的影响,生产量大的时期也就是需水量大的时期,植物营养生长旺盛期和生殖器官形成期是对缺水最敏感的水分临界期。

  矿质营养

  矿质营养和植物的生长有密切的关系,植物缺乏其中任何一种必需的矿质元素,都能影响生长。关于各种矿质元素的生理作用,在植物生长与养分一章已经讲述,这里不另叙述。

  生长物质

  植物生长物质包括植物激素和植物生长调节剂(在植物生长物质一节中已经论述),植物只有在各种生长物质的调节和控制下,才能以适宜的速度生长。

2. 控制植物生长发育的途径有哪些方法

光质又称光的组成,是指具有不同波长的太阳光谱成分,其中波长为380~760nm之间的光(即红、橙、黄、绿、蓝、紫)是太阳辐射光谱中具有生理活性的波段,称为光合有效辐射。

而在此范围内的光对植物生长发育的作用也不尽相同。

植物同化作用吸收最多的是红光,其次为黄光,蓝紫光的同化效率仅为红光的14%;红光不仅有利于植物碳水化合物的合成,还能加速长日植物的发育;相反蓝紫光则加速短日植物发育,并促进蛋白质和有机酸的合成;而短波的蓝紫光和紫外线能抑制茎节间伸长,促进多发侧枝和芽的分化,且有助于花色素和维生素的合成。

因此,高山及高海拔地区因紫外线较多,所以高山花卉色彩更加浓艳,果色更加艳丽,品质更佳。

3. 植物生长发育的调控有三个调控水平

(1)内源性:植物激素都是内生的。是植物在生命活动过程中接受了特定环境信息诱导而形成的正常代谢产物,因此又称为植物内源激素。

(2)可运性:在植物体内是能移动的。不同的植物激素在植物体内由不同的器官产生,然后转运到不同的作用部位,对生长发育起调节作用。它们的转移速度和方式,因植物激素种类的不同而异,也因植物及器官特性的不同而有所不同。

(3)微量调节性:极低的浓度即具有调节功能。它们在植物体内的含量很低,但对植物的生长发育起着重要的调控作用。

4. 控制植物生长方向

通常进行播种的植物生长的四个过程分别是种子发芽、抽生叶片、抽放花蕾和结果实。如果是没有种子的植物生长就只有靠分株和扦插等措施进行繁殖,所以让它们的过程是分株、幼苗成长、开花、结果。

1、发芽通过种子繁殖的植物萌发的过程:胚胎在种子内部等待(一些植物胚胎可以等待数十年),直到外部条件开始分解种子的外壳或种皮。种子需要水和热量才能发芽。水有助于种子破坏种皮,在某些情况下,种皮可能非常坚硬。玉米和牵牛花种子有一个非常坚韧的种皮,需要在种植之前浸泡在水中。种子开始生长就开始吸收水分,引发种子内的细胞和酶繁殖。当被包裹的胚胎涡轮增压代谢过程时,种子被引发以释放第一根结构(称为自由基),通常在几天之内,幼苗从其种皮破裂并继续向下和向上生长。

2、主根和根随着枝条和子叶向上生长,主根和较小的根毛也将开始生长。为了使植物继续生长,必须有适当的土壤或具有适当营养的水。植物可以在土壤或水中生长(水产养殖),只要它能够获得生长所需的适当营养。

3、叶子和花一旦根已锚定幼苗,向上移动的生长开始。该植物有一个坚实的基础,它正在获得一定量的食物和水,所有这些将有助于茎的建立和成年叶子的创造。随着细胞繁殖,植物将继续向上和向外生长,将出现新的叶子。许多植物中的花朵也会出现,随着植物的生长,它将继续需要土壤和水中的适当养分以及阳光或正确的人造光。健康状况良好的植物最终会达到完全高度和成熟度,这取决于它们的特定种类。扩展资料:经过历代植物学家的研究证实,缠绕茎植物生长方向的不同,其实源自于其天生的向光性,与光照的方向有很大关系。向光源方向弯曲是植物生长的一个特点,这种现象产生的主要原因是由于植物茎中的生长素分布并不均匀。因此,在光线的作用之下,植物茎面向阳光的一面便会产生阴电荷,而背着阳光的一面则会产生相反的阳电荷。植物的生长素主要带阴电荷。由于阴阳相吸的原理,大部分的生长素会被吸引到植物的背光一面,这就导致植物背光面的细胞生长较之向光面的细胞更快,进而使得缠绕茎植物出现向光源方向弯曲的生长现象。

5. 控制植物生长的意义是什么?

绿色植物利用太阳光能将所吸收的二氧化碳和水合成有机物,并释放氧气的过程. 详细解释:光合作用(Photosynthesis)是绿色植物和藻类利用叶绿素等光合色素和某些细菌(如带紫膜的嗜盐古菌)利用其细胞本身,在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化为有机物,并释放出氧气(细菌释放氢气)的生化过程.植物之所以被称为食物链的生产者,是因为它们能够通过光合作用利用无机物生产有机物并且贮存能量.通过食用,食物链的消费者可以吸收到植物及细菌所贮存的能量,效率为10%~20%左右.对于生物界的几乎所有生物来说,这个过程是它们赖以生存的关键.而地球上的碳氧循环,光合作用是必不可少的.

6. 控制植物生长方向的植物激素是哪一种

  促进叶片气孔关闭的植物激素是脱落酸ABA。   脱落酸(abscisicacid,ABA)别名:脱落素(Abscisin),休眠素(Dormin)。一种抑制生长的植物激素,因能促使叶子脱落而得名。可能广泛分布于高等植物。除促使叶子脱落外尚有其他作用,如使芽进入休眠状态、促使马铃薯形成块茎等。对细胞的延长也有抑制作用。1965年证实,脱落素II和休眠素为同一种物质,统一命名为脱落酸。   脱落酸可由氧化作用和结合作用被代谢。脱落酸可以刺激乙烯的产生,催促果实成熟,它抑制脱氧核糖核酸和蛋白质的合成。

7. 控制植物生长发育的途径有哪些方面

通过植物根系吸收养分:

植物所获得的养分大部分是通过根系的吸收获得的,根部营养使作物获得高产的前提与保证。

一、根部吸收养分的过程

1、通过交换吸附将离子吸附在根部细胞表面。

所谓交换吸附是指根部细胞表面的正负离子(主要是细胞呼吸形成的CO2和H2O生成H2CO3再解离出的H 和HCO3-)与土壤中的正负离子进行交换,从而将土壤中的离子吸附到根部细胞表面的过程。

2、离子进入根部内部

通过质外体途径进入根部内部,质外体是指植物体内由细胞壁、细胞间隙、导管等所构成的允许矿物质、水分和气体自由扩散的非细胞质开放性连续体系。离子经质外体运送至内皮层时,由于有凯氏带的存在,离子(和水分)最终必须经共质体途径才能到达根部内部或导管。这使得根系能够通过共质体的主动转运及对离子的选择性吸收控制离子的运转,共质体是指植物体内细胞原生质体通过胞间连丝和内质网等膜系统相联而成的连续体,溶质经共质体的运输以主动运输为主。

3、离子进入导管

离子经共质体途径最终从导管周围的薄壁细胞进入导管。

二、影响植物根系吸收矿质元素的因素

1、土壤温度

土壤温度过高或过低,都会使根系吸收矿物质的速率下降。高温(如超过40℃)使酶钝化,影响根部代谢,也使细胞透性加大而引起矿物质被动外流;温度过低,代谢减弱,主动吸收慢,细胞质粘性也增大,离子进入困难。同时,土壤中离子扩散速率降低。

2、土壤通气状况

根部吸收矿物质与呼吸作用密切有关。土壤通气好,增强呼吸作用和ATP的供应,促进根系对矿物质的吸收。

3、土壤溶液的浓度

土壤溶液的浓度在一定范围内增大时,根部吸收离子的量也随之增加。但当土壤浓度高出此范围时,根部吸收离子的速率就不再与土壤浓度有密切关系。此乃根细胞膜上的传递蛋白数量有限所致。而且,土壤溶液浓度过高,土壤水势降低,还可能造成根系吸水困难。因此,农业生产上不宜一次施用化肥过多,否则,不仅造成浪费,还会导致“烧苗”发生。

4、土壤溶液的pH值

直接影响根系的生长。大多数植物的根系在微酸性(pH5.5~6.5)的环境中生长良好,也有些植物(如甘蔗、甜菜等)的根系适于在较为碱性的环境中生长。

影响土壤微生物的活动而间接影响根系对矿质的吸收。当土壤偏酸(pH值较低)时,根瘤菌会死亡,固氮菌失去固氮能力。当土壤偏碱(pH值较高)时,反硝化细菌等对农业有害的细菌发育良好,这些都会对植物的氮素营养产生不利影响。

影响土壤中矿质的可利用性。土壤溶液中的pH值较低时,有利于岩石的风化和K 、Mg2 、Ca2 、Mn2 等的释放,也有利于碳酸盐、磷酸盐、硫酸盐等的溶解,从而有利于根系对这些矿物质的吸收。但pH值较低时,易引起磷、钾、钙、镁等的淋失;同时引起铝、铁、锰等的溶解度增大,而造成毒害。相反,当土壤溶液中pH值增高时,铁、磷、钙、镁、铜、锌等会形成不溶物,有效性降低。

6、土壤水分含量

土壤中水分的多少影响土壤的通气状况、土壤温度、土壤pH值等,从而影响到根系对矿物质的吸收。

7、土壤颗粒对离子的吸附

土壤颗粒表面一般都带有负电荷,易吸附阳离子。

8、土壤微生物

菌根的形成可增强根系对矿物质和水的吸收。固氮菌、根瘤菌等有固氮能力。而反硝化细菌则引起NO3—N损失。

9、土壤中离子间的相互作用

溶液中某一离子的存在会影响另一离子的吸收。例如,溴的存在会使氯的吸收减少。钾、铷和铯三者之间互相竞争。通过植物叶片吸收

一、叶面营养是植物根外营养的重要途径

叶面施肥可以补充植物后期由于土壤中吸收养分不足而带来的养分亏缺,保证作物的增产;可在植物根系受到严重影响时,及时弥补作物所遭受到的损失,如磷、锌、硼、铁等易被土壤固定而使植物难以利用的养分通过叶面施用可以为植物较快吸收,发挥更好的增产效果;叶面肥可以在作物不同生长阶段、不同种植密度和高度下进行,有利于集约农业的大规模机械化施肥操作。

二、植物对养分的吸收具有选择性和适应性

在植物整个营养期中有两个关键时期,即植物营养临界期和植物营养最大效率期。在植物营养临界期,植物对某种养分要求很迫切,该养分过多或过少都可能影响植物的生长发育,于后期难以纠正或弥补。在植物营养最大效率期,植物生长迅速,吸收养分能力特别强,及时满足植物养分需要,对提高产量有明显的效果,植物除了能够由根部从土壤中吸收养分外,叶面营养又是一种重要的养分吸收途径。

三、叶子能直接吸收和利用有效养分

对养分的利用率较高,并可防止或避免由于土壤对有效养分的固定而降低其有效性。因此,植物叶面喷施肥料,特别是某些容易被土壤固定的元素如磷、铜、锰、铁、锌等,具有营养效果好的特点。叶面对养分吸收、运转比根快,有利于及时满足作物生长发育的要求。一般尿素施在土壤中4-5天后才有效果,采用叶面喷施只要1-2天即可见效。因此,采用喷施技术可以用作及时防治或矫正某些缺素症或因自然灾害而需要迅速供给养分的补救措施。自叶面吸收的养分能直接影响体内代谢,参与植物新陈代谢,增强体内酶的活性。通过叶面施肥可提高植物的抗逆性,延迟叶片早衰,并可促进早熟等。叶面喷施用量少,节省投入,尤其是磷、钾肥和微量元素肥料,一般为土壤施用量的1/10-1/5,还可避免微量元素肥料用量过多造成危害的问题。叶面施肥不能代替根部施肥,因为植物吸收养分的绝大多时还是通过根系吸收的;叶面施肥与根部施肥结合,可以起到相互促进、相互补充的作用。

四、叶面喷施的养分是通过叶片的角质层和气孔进入植物体内。

植物叶片对养分吸收速率和叶面肥料利用率有密切关系。植物易吸收氮、钾,并很快被运转参与植物代谢,相对而言,磷、硫以及锌、铜、锰、铁、钼移动性较差,而硼、镁、钙等元素则滞留在该叶片中极难移动,一般新叶片吸收能力强。

肥料湘军整理农大教材,转载请注明孟葆隆大农业。

上一篇:七里香庭连排(七里香堤的房子怎么样) 下一篇:杂交西番莲(西番莲新品种)

游客 回复需填写必要信息